位置:首頁 > 大數據教學 > R語言教學 > R語言卡方檢驗

R語言卡方檢驗

卡方檢驗是一種統計方法,以確定兩個分類變量之間有一個顯著的相關性。 這兩項變量應該是從同一個群體,它們應該是分類如 - Yes/No, Male/Female, Red/Green 等。例如,我們可以建立與人的冰淇淋購買模式的觀測數據集,並嘗試相關的人的性彆與冰淇淋他們喜歡的味道。如果找到相關,我們可以通過了解性彆的人訪問的數目計劃適當的口味庫存。

語法

用於執行卡方檢驗的功能,使用函數 chisq.test().

R中創建卡方檢驗的基本語法是:

chisq.test(data)

以下是所使用的參數的說明:

  • data 是含有在觀察變量的計數值的表的形式的數據。

示例

我們將在 “MASS” 庫,它代表了不同型號的汽車在1993年銷量的 Cars93 數據。

library("MASS")
print(str(Cars93))

當我們上麵的代碼執行時,它產生以下結果:

'data.frame':   93 obs. of  27 variables:
 $ Manufacturer      : Factor w/ 32 levels "Acura","Audi",..: 1 1 2 2 3 4 4 4 4 5 ...
 $ Model             : Factor w/ 93 levels "100","190E","240",..: 49 56 9 1 6 24 54 74 73 35 ...
 $ Type              : Factor w/ 6 levels "Compact","Large",..: 4 3 1 3 3 3 2 2 3 2 ...
 $ Min.Price         : num  12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ...
 $ Price             : num  15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ...
 $ Max.Price         : num  18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36.3 ...
 $ MPG.city          : int  25 18 20 19 22 22 19 16 19 16 ...
 $ MPG.highway       : int  31 25 26 26 30 31 28 25 27 25 ...
 $ AirBags           : Factor w/ 3 levels "Driver & Passenger",..: 3 1 2 1 2 2 2 2 2 2 ...
 $ DriveTrain        : Factor w/ 3 levels "4WD","Front",..: 2 2 2 2 3 2 2 3 2 2 ...
 $ Cylinders         : Factor w/ 6 levels "3","4","5","6",..: 2 4 4 4 2 2 4 4 4 5 ...
 $ EngineSize        : num  1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 ...
 $ Horsepower        : int  140 200 172 172 208 110 170 180 170 200 ...
 $ RPM               : int  6300 5500 5500 5500 5700 5200 4800 4000 4800 4100 ...
 $ Rev.per.mile      : int  2890 2335 2280 2535 2545 2565 1570 1320 1690 1510 ...
 $ Man.trans.avail   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 1 1 1 1 ...
 $ Fuel.tank.capacity: num  13.2 18 16.9 21.1 21.1 16.4 18 23 18.8 18 ...
 $ Passengers        : int  5 5 5 6 4 6 6 6 5 6 ...
 $ Length            : int  177 195 180 193 186 189 200 216 198 206 ...
 $ Wheelbase         : int  102 115 102 106 109 105 111 116 108 114 ...
 $ Width             : int  68 71 67 70 69 69 74 78 73 73 ...
 $ Turn.circle       : int  37 38 37 37 39 41 42 45 41 43 ...
 $ Rear.seat.room    : num  26.5 30 28 31 27 28 30.5 30.5 26.5 35 ...
 $ Luggage.room      : int  11 15 14 17 13 16 17 21 14 18 ...
 $ Weight            : int  2705 3560 3375 3405 3640 2880 3470 4105 3495 3620 ...
 $ Origin            : Factor w/ 2 levels "USA","non-USA": 2 2 2 2 2 1 1 1 1 1 ...
 $ Make              : Factor w/ 93 levels "Acura Integra",..: 1 2 4 3 5 6 7 9 8 10 ...

上述結果表明,該數據集具有許多可被視為分類變量因子變量。在我們的模型中,我們會考慮的變量:"AirBags" 和 "Type". 這裡我們的目標是找出車出售的類型和空氣包裝袋具有的類型之間的顯著相關性。如果做了相關性觀察,我們可以估算出這類型的汽車,使用什麼類型的氣囊賣得更好。

# Load the library.
library("MASS")

# Create a data frame from the main data set.
car.data <- data.frame(Cars93$AirBags, Cars93$Type)

# Create a table with the needed variables.
car.data = table(Cars93$AirBags, Cars93$Type) 
print(car.data)

# Perform the Chi-Square test.
print(chisq.test(car.data))
                     Compact Large Midsize Small Sporty Van
  Driver & Passenger       2     4       7     0      3   0
  Driver only              9     7      11     5      8   3
  None                     5     0       4    16      3   6

        Pearson's Chi-squared test

data:  car.data
X-squared = 33.001, df = 10, p-value = 0.0002723

Warning message:
In chisq.test(car.data) : Chi-squared approximation may be incorrect

結論

結果表明小於0.05的p值指示的字符串相關性。